If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+80x-500=0
a = 1; b = 80; c = -500;
Δ = b2-4ac
Δ = 802-4·1·(-500)
Δ = 8400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8400}=\sqrt{400*21}=\sqrt{400}*\sqrt{21}=20\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20\sqrt{21}}{2*1}=\frac{-80-20\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20\sqrt{21}}{2*1}=\frac{-80+20\sqrt{21}}{2} $
| 4x+8+6x+3x+12+6x=180 | | 2x+x+7=6x-3x+7 | | 8-4x=2x+33 | | 15t-14=14 | | 7x-9=3(x+4) | | -8(x+7)=8x+40 | | 6(x+4)=3(2x+18 | | 68x=57-5x | | -4=u-8 | | (x-3)8=4 | | -(3x2)-(x-1)=-(2x-2)-(2x+4) | | 64x+4=57-7x | | 0=-8-9p^2 | | y=-1+7/9 | | -5(-2+5v)=3v+14 | | (w+3)^2-54=0 | | 2x+7/5=5 | | -2y+3=7y+19 | | 0=-8-9p2 | | 15=6y+ | | 6x-45=x-35 | | 14+6x=2x-6 | | x-3÷8=4 | | (d+3)2=7 | | 2x^2+36x-18=0 | | 7x−95=45 | | -6t−7=17 | | -6t−7=17t= | | 2(2d+3)=27 | | (x+29)+87=180 | | 7+x3=2x+13 | | 27x-9=36x |